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ABSTRACT 

 

The foundation of the theory of functionally graded plates with simply supported edges, under a 

Friedlander explosive air-blast are developed within the classical plate theory (CPT).  Within the 

development of the theory, the two constituent phases, ceramic and metal, vary across the wall 

thickness according to a prescribed power law. The theory includes the geometrical 

nonlinearities, the dynamic effects, compressive tensile edge loadings, the damping effects, and 

thermal effects. The static and dynamic solutions are developed leveraging the use of a stress 

potential with the Extended-Galerkin method and the Runge-Kutta method. Validations with 

simpler cases within the specialized literature are shown. The analaysis focuses on how to 

alleviate the unwanted effects of large deformations through proper material selection and the 

proper gradation of the constituent phases or materials. 

Key Words: Functionally Graded; Dynamic Response; Explosive Blast; Transient Response 

1. INTRODUCTION 

During combat situations, the structure of army military vehicles may have to structurally 

endure the effects of blast loading. Advances in functionally graded materials(FGMs) which 

combine the properties of two dissimilar materials has been a motivating factor in viewing these 

types of materials as a viable alternative to the current isotropic metallic structures being utilized 

in the hull and armor plating.   
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FGM’s are microscopically nonhomogeneous with thermo-mechanical properties which vary  

smoothly and continuously from one surface to another. These graded structures allow the 

integration of dissimilar materials like ceramic and metals that combine different or even 

incompatible properties such as hardness and toughness. 

In this paper, the foundation of the nonlinear theory of functionally graded plate-type structures 

under an explosive air-blast is developed. An approximate solution methodology for the intricate 

nonlinear boundary value problem is devised, and results that are likely to contribute to a better 

understanding of the structural behavior under an explosive blast with beneficial implications 

towards their improved design and exploitation are presented. 

2. BASIC ASSUMPTIONS AND PRELIMINARIES 

The plate mid surface is referred to a cartesian orthogonal system of coordinates (x,y,z), while z 

is the thickness coordinate measured positive  in the upwards direction from the mid-surface of 

the plate with h being the uniform plate thickness and y is directed perpendicular to the x-axis in 

the plane of the plate. See Fig. 1 below. 

The nonlinear elastic theory of FG Plates is developed using the classical plate deformation 

Theory [6]. It is also assumed that the FG plate is made-up of ceramic and metal phases whose 

material properties vary smoothly and continuously across the wall thickness.  By applying the 

rule of mixtures, the material properties such as Young’s Modulus, Density, and Poisson’s Ratio 

are assumed to vary across the wall thickness as  

                                                     )()()( zVPzVPzP mmcc  , (1a) 

In which Pc and Pm denote the temperature-dependent material properties of the ceramic and 

metallic phases, of the plate, respectively and may be expressed as a function of temperature [7, 

9] as 
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1-0 TPTPTPTPPP   (1b) 

Where, ,,,, 2110 PPPP and 3P are the coefficients of temperature T(K) and are unique to the 

constituent materials. )(zVc and )(zVm  are correspondingly, the volume fractions of the ceramic 

and metal respectively, fulfilling the relation 

                                                                  1)()(  zVzV mc . (3) 

By virtue of (3), Eq. (1a) can be expressed as  

                                                     )()()](-)([),( TPzVTPTPTzP mcmc  . (4) 

By observation, one can deduce that for 0)( zVc , )(),( TPTzP m  and for 1cV , 

)(),( TPTzP c . As a result, ]1,0[)( zVc  

     Two Scenarios of the grading of the two basic component phases, ceramic and metal, through 

the wall thickness are considered.  

Case (1): The phases vary symmetrically through the wall thickness, in the sense of having full 

ceramic at the outer surfaces of the plate and tending toward full metal at the mid-surface.  For 

this case, )(zVc can be expressed as 
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Where the signum function is defined as 
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N  is termed the volume fraction index which provides the material variation profile through the 

plate wall thickness, )0(  N . A pictorial representation of the distribution of the constituent 

materials are shown below in Fig. 2. 

Case (2): The phases vary non-symmetrically through the wall thickness, and in this case there is 

full ceramic at the outer surface of the plate wall and full metal at its inner surface. For this case, 

)(zVc can be expressed as 

                                                                   

N

c
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zh
zV 
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)(  (7) 

Below is a pictorial representation of the antisymmetric case shown in Fig. 3. 

It should be noted that in contrast to case (2), where there exists coupling between stretching 

and bending, such coupling is not present for the symmetric case (1).  Also, for the purposes of 

simplicity the Poisson’s ratio will be assumed to be constant throughout the plate structure. From 

Eqs. (1)-(7), the effective material properties of a FG plate can be expressed for the 

asymmetric case as                          

                        
 

)](),(),([

2

2
)](),(),([),(),,(),,(

TTTE

h

zh
TTTETzTzTzE

mmm

N

cmcmcm



 






 


 (8) 

And for the symmetric case as 
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Where, 

                                                                ,            (11) 

 

3. KINEMATIC EQUATIONS 

3.1 The 3-D Displacement Field  

Consistent with the classical plate theory [6], the distribution of the 3-D displacement 

quantities through the wall thickness can be expressed as 

                                   
xzwuu ,00  ,  yzwvv ,00  ,  0ww 

 (12a-c) 
 

Within these equations, ),,( wvu  are the 3-D displacement quantities along the ),,( zyx

directions, respectively. While, 000 and,, wvu  are the 2-D displacement quantities of the points 

on the mid-surface.  

3.2 Non-Linear Strain-Displacement Relationships 

The nonlinear strain displacement relationships across the plate thickness at a distance from the 

mid-surface take the form [2, 3, 6]  

                    
2/2

,, xxxx wu  , 2/2
,, yyyy wv  , yxxyxyxy wwvu ,,,,2   ,  (13) 

0 yzxz 

Substitution of Equations (12a-c) into Equations (13) results in the strain measures across the 

plate thickness in terms of the 2-D displacement quantities of the mid-surface of the plate 

expressed as 
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Where, 

                            }2/2/{}{ ,,,,
2
,,

2
,,

)0()0()0(
yxxyyyxxxyyyxx wwvuwvwu   (14b) 

                                           }2{}{ ,0,0,0
)1()1()1(

xyyyxxxyyyxx www   (14c) 

 

In the above expressions, ),,( 000
xyyyxx  , are referred to as the membrane strains and 

),,( 111
xyyyxx   are referred to as the flexural bending strains which are also known as the 

curvatures. 

 

4. CONSTITUTIVE EQUATIONS 

The stress-strain relationships for a state of plane stress is expressed as [10] 
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The material stiffnesses, )6,2,1(),( izQij are given by [9, 10] 
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The standard force and moment resultants of a plate are defined as 
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With the use of Equations (13)–(17), the stress resultants and stress couples are related to the 

strains by [3] 
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In which [A], [B], and [D] are the respective in-surface, bending-stretching coupling, and 

bending stiffnesses. For the case of symmetric FG Plates, [B]=0, since there is no bending-

stretching coupling. The global stiffness quantities, ijijij DBA and,, , (i, j=1,2,6) are defined as 
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     In view of Equations (8), (9), (10), (16), and (19), the global stiffness quantities are 

determined as 
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where  for the antisymmetric case, 

                          
)]1/(11[1  NhEE cm ,  )]22/(1)2/(1[2

2  NNhEE cm  (21)  

                            )]44/(1)2/(1)3/(1[12/ 33
3  NNNhEhEE cmm  

And for the symmetric case, 

                          )]1/(11[1  NhEE cm , 02 E , )]3(4/112/1[3
3  NhEE cm  (22) 
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5. GOVERNING EQUATIONS 

Hamilton’s principle is used to derive the equations of motion and the boundary conditions. It 

is formulated as 

                                                
1

0

0)(
t

t
dtKVUJ  , (23) 

Where    and   are two arbitrary instants of time. U denotes the strain energy, V denotes the 

work done by surface tractions, edge loads, and body forces, and K denotes the kinetic energy of 

the 3-D body of the structure, while   is the variational operator.  In Equation (23), the strain 

energy is given by 
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where 0  denotes the mid-surface area of the panel. The work done by external  loads is 

expressed as  
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In the above expression ),( yxPt  is the distributed force at the top surface )2( hz  , ),( **
yyxx   

are the specified stress components along the plate edges, and ),( vu   are the virtual 

displacements along the normal and tangential directions, respectively, along the plate edges. 

Considering only the transversal inertia of the structure, the variation in kinetic energy is 

expressed as 

                                                            
0

00 dwwIK   (26) 

Where, 



UNCLASSIFIED: Dist A. Approved for public release 

Page 9 of 21 
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where )(z is the mass per unit volume.  

Considering Equation (23) in conjunction with Equations (24)-(27) , along with the constitutive 

equations (15), the strain-displacement relationships, equations (14), and carrying out the 

integration through the thickness, integrating by parts whenever feasible, using the expression of 

global stress resultants and stress couples, while retaining only the transversal load, transverse 

inertia, and transverse damping results in  
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(28) 

Invoking  the arbitrary and independent character of variations yx wwwvu ,0,0000 and,,,, 

one obtains the equations of motion and as a by-product the boundary terms or conditions. This 

results in three equations of motion in terms of the global stress resultants and stress couples and  

four boundary conditions along the plate edges. These equations of motion and boundary 

conditions can be respectively expressed as 
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 (31c) 

The boundary conditions become 

Along the edges 1,0 Lx   

 0xxN  or 00 u  (35) 

 0xyN  or 00 v  (36) 

 0xxM  or 0,0 xw  (37) 

 02 ,0,0,,  yxyxxxyyxyxxx wNwNMM  or 00 w  (38) 

Along the edges 2,0 Ly   

 0yxN  or 00 u  (35) 

 0yyN  or 00 v  (36) 

 0yyM  or 0,0 yw  (37) 

 02 ,0,0,,  yyyxxyxxxyyyy wNwNMM  or 00 w  (38) 

For the case of all edges simply supported and freely movable the boundary conditions are as 

follows: 

                                     
 xxxxxyxx NNNMw ,00  on 1,0 Lx   (40)  

 yyyyyxyy NNNMw ,00  on 2,0 Ly    
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It should be mentioned for clarification sake that for compressive edge loading, 

0*0* and, yyyyxxxx NNNN  . 

AIR-BLAST LOADING 

With the ever increasing demands for increased safety for the warfighter in the field to operate 

structurally sound vehicles in the event of an IED or some other type of explosive, it is 

imperative that an understanding of the structural response of various components within 

military combat vehicles under an explosive blast be understood so that measures can be taken 

from a design standpoint to ensure the durability and survivability of these components. To begin 

to achieve this understanding, the type of explosive loading considered here is a free in-air 

spherical air burst. Such an explosion creates a spherical shock wave which travels radially 

outward in all directions with diminishing velocity. The form of the incident blast wave from a 

spherical charge is shown in Fig. 4. Where     is the peak overpressure above ambient pressure, 

   is the ambient pressure,    is the time of arrival,    is the positive phase duration of the blast 

wave, and   is the time. The waveform shown in Fig. 4. is given by an expression known as the 

Friedlander equation and is given as  

 

                                  ]/)(exp[]/)(1)[()( 00 papat ttttttPPtP S    (41) 

Where,   

                                                   ZZZPS /108/114/1772 23
0   (42) 

 In equations (41) and (42), Z is known as the scaled distance given by 
3/1/WRz  with R 

being the standoff distance in meters and W  being the equivalent charge weight of TNT in terms 
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of kilograms. Also,   is known as the decay parameter which is determined by adjustment to a 

pressure curve from a blast test.  

For the conditions of standard temperature and pressure (STP) at sea level, the time of arrival 

at and the positive phase duration pt  can  be determined from [4]  

                                                         3/1
111 )/(// WWRRtt       (43) 

Where 1t represents either the arrival time or positive phase duration for a reference explosion of 

charge weight 1W , and   represents either the arrival time or positive phase duration for any 

explosion of charge weight  . The determination of the standoff distance for any charge weight 

W follows a similar reasoning. The application of these relationships is known as cube root 

scaling. It should be understood that in applying these relationships that the standoff distances 

are themselves scaled according to the cube root law.  

6. SOLUTION METHODOLOGY 

To satisfy the first two equations of motion, equations (31a,b), a stress potential will be utilized 

which allows the in-plane stress resultants to be  expressed by letting 

                                             xyxyxxyyyxx NNN ,,, ,,   . (44) 

The third equation of motion, equation (31c), can be expressed in terms of two unknown 

variables, the stress potential   and the transverse displacement   . To accomplish this, a partial 

inversion, of equation (18), the details of which are not presented here, needs to be carried out. 

Performing a partial inversion  results in [4] 
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Where, 

                                  1*11 ]][[][  ,   [B]][][   ,][][   ABBABAA T   

                                                           ][]][[][][ 1* BABDD   (46) 

Using Equations (44), (45), and (46) and simplifying, Equation (31c) takes the form  

TT
txxyyxyxyyyxx MNPwCwIwwwwD 22

000,0,,0,,0,0
4 )2(     (47a) 

Where, 
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 (47b,c) 

This gives one governing equation with two unknowns,    and  . One more equation is needed 

in terms of the same unknowns which will give two equations in terms of two unknowns which 

can then be solved. This will come from the compatibility equation. By eliminating the in-plane 

displacements from the strain-displacement relationships, equations (14) the relationship 

between the in-plane strains and the transversal deflection known as the compatibility equation 

can be shown to be given by 

                                               yyxxxyxyxyxxyyyyxx www ,0,0
2
,0

0
,

0
,

0
,    (48) 

In view of equations (44) , (45), and (46), the compatibility equation is expressed as  

                                              T
yyxxxy NwwwE 2

,0,0,01
4 )1()(    (49) 

In equations (47a) and (49),  22222 yx  where  is referred to as the Laplacian 

operator.  

Equations (47a) and (49) are the basic governing equations used to investigate the structural 

response of FG plates under external excitation loading. For the purposes of this paper, from this 

point forward, the thermal terms will be discarded. To this end, to solve equations (47a) and (49), 
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the approach adopted from [2] will be utilized. In this respect, the following functional forms are 

assumed for and0w [2].  

                                            yxtwtyxw nmmn  sinsin)(),,(0   
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(50a,b)

 

Where ,...2,1,,/,/ 21m  nmLnLm n   are the number of half waves in the x and y

directions, respectively, and )(twmn  is the amplitude of deflection. Also, 

)(and),(),(),( tDtCtBtA mnmnmnmn  are coefficients to be determined. By substituting equations 

(50a,b) into equation (49), the coefficients )(and),(),(),( tDtCtBtA mnmnmnmn  are determined 

as                      

0)()(,32/)()(,32/)()( 222
1

222
1  tDtCtwEtBtwEtA mnmnnnmnmnmnmnmn   (51) 

As a result of the assumed form for the Airy’s potential function,   the following relationships 

expressed mathematically as  
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  (52) 

implies that *
22

*
11, NN acquire the meaning of average in-plane compressive edge loads. 

Moreover, by assuming  

                                                     yxtPtP nmmnt  sinsinsin)()(   (53a) 

which implies through integration of both sides over the plate area that  

                                           
2 1

0 021

sinsin)(
4

)(
L L

nmtmn ydxdyxtP
LL

tP   (53b) 

or through integration gives 
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                                                     )1,1(),(,/)(16)( 2  nmtPtP tmn   (53c) 

and introduction of equations (50a,b) and (51) into equation (47a) and retaining the resulting 

equation along with the unsatisfied boundary conditions in the energy functional and applying 

the Extended Galerkin technique results in the following nonlinear differential equation 

governing the structural response of FG plates, under external excitation. 

 

                     )(
~

)()()()(2)( 32 tPtwttwtwtw mnmnmnmnmnmnmnmnmn      (54) 

 

Where,        represents the amplitude of deflection of the plate as a function of time, 

2
0/)(16)(

~
ItPtP tmn  , 0/ IKmnmn   is the natural frequency of the FG plate, and 

mnmn IC 02/  is the non-dimensional damping factor, and 16/)( 44
1 nmmn E    . It 

should be noted that at the center of the plate )2/,2/(),( 21 LLyx  , )(tmn is equal to the 

maximum deflection of the plate. In these latter expressions, 
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Where, 

21 / LL  is referred to as the aspect ratio and ** / xxyy NN is referred to as the 

compressive/tensile edge load ratio.  

Equation (54) is a nonlinear equation in terms of the plate deflections as a function of time. It is 

interesting to note that equation (54) is very similiar to Duffing’s Equation. To obtain the plate 
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deflections as a function of time, equation (54) is solved using the Fourth-Order Runge-Kutta 

Method with zero initial conditions. 

7. RESULTS AND DISCUSSION 

To validate the present theory, comparisons are made with Akay [1] who considered a step 

loading excitation of a simply supported elastic plate based on a Von-Karman nonlinear theory. 

To make this comparison the external excitation, )(tPt , expressed as 

)]()([)( 0ttHtHPtPt   

was applied. H(t) is referred to as the Heaviside Step function defined as 

00)(and0for1)(  tfortHttH  The geometrical and material properties used were, 

1,00635.0,438.21  mhmL  

25.0,/2547,3.70 3  avemm mkgGPaE   

 

In addition, the constant pressure and time duration were taken as sec2.0,82.48 0  tPaP . 

Since only a metallic isotropic plate was made for comparison, the volume fraction index was 

taken as 2000N which implies fully metal. With this in hand, the central deflection time 

history is displayed in Fig 5. The results in this figure reveal close agreement between Akay’s 

finite element method and the present analytical/ approximation method employed here in the 

present analysis. 

To illustrate the present approach, a ceramic-metal functionally graded plate consisting of Ti-

6Al-4V and Aluminum Oxide with the following material properties, which were adopted from 

[9], were considered for the numerical results presented.  

2981.0,/kg 4429       GPa, 7.105

26.0,/kg 3750     GPa, 24.320

3
m

3
c





mm

cc

mE

mE




 

2791.0ave
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The geometrical properties used for the FG Plate are m11 L , 121  LL , and unless 

otherwise stated m0254.0h , the decay factor, 5.0 , and the halfwaves, (m,n) = (1,1). In 

addition, the following reference values, in Table 1. were utilized to determine the time of arrival 

and positive phase duration [5].  In Fig 6, comparisons of the central deflection of the plate for 

various volume fraction indexes is depicted. it can be seen that the symmteric functionally 

graded case with a volume fraction index of N=0.5 gives the lowest deflections as a function of 

time, as compared to the fully metal isotropic case.  

Fig 7. is the counterpart of Fig 6. with the exception of the effect of damping. The effect of 

damping shows a rapid attentuation of the deflections over a very short period of time. It is 

shown that damping plays a major role in the decrease of deflections of the plate. 

In Fig 8. it can be seen that the effects of various amounts of damping on the central 

deflections vs time attenuates faster as the amount of damping is increased for a fixed volume 

fraction of the constituent materials. The effects of the compressive/tensile edge loading on a FG 

plate for a fixed volume fraction index and a fixed amount of damping on the deflection-time 

response is depicted in Fig. 9. It is clear that, for tensile edge loading, the magnitudes of the 

deflections decreases in contrast to compressive tensile edge loading where the deflections are 

increased.  

Fig 10. reveals the effects of the aspect ratio on the deflection-time response which indicates 

that the deflections are larger for smaller aspect ratios than for larger aspect ratios. From a design 

standpoint, utilizing larger aspect ratio panels would be more beneficial by give smaller 

deflections under an explosive-type excitation, hence decreased stresses.  

Fig 11. shows that as the volume fraction index increases from a value of zero (fully ceramic) 

to a value of 500 (essentially fully metal) that the deflections increse then taper off as phases of 



UNCLASSIFIED: Dist A. Approved for public release 

Page 18 of 21 

the constituent materials approach fully metal. Fig 12. shows the effect of the decay parameter 

on the deflection-time history response. For small values of the decay parameter, it can be seen 

that the negative phase of the blast pulse or suction phase lasts longer and as the the value of the 

decay paremeter increases the negative phase endures less thus giving more periodic behavior 

around the zero deflcetion point. 

8. CONCLUDING REMARKS 

A rigorous treatment of functionally graded plates with grading in the transverse direction has 

been studied. Validations with a simpler transversal excitation step load found in Akay [1], who 

took a specialized finite element approach, has been made. It has been shown that damping has 

an important effect when it comes to the attenuation of the deflections. It has also been shown 

that other factors such as the compressive/tensile edge loading, the aspect ratio, and the 

symmetry of the transverse grading throughout the structure plays an important role in the 

deflection-time history of the structure.  

In Fig. 6. it was shown that functionally grading inherently reduces the deflections when 

compared to the isotropic metallic case. From a design standpoint, it would be appropriate at this 

point to state that integration of functionally graded materials within plate-type structures would 

benefit the structural response of the structure. Also, it should be mentioned, although not shown 

here, that the choice of the ceramic and metal constituent materials chosen would also have a 

great impact on the response of the dynamic response of the structure.   

The idea is to reduce the stresses within the structure concerned here. By reducing the 

magnitude of the deflections, the stresses are reduced. It is hoped and realized that this present 

study presented here will give insight into some of the factors that can play an important role in 
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the structural response of functionally graded plates and fill in some of the fundamental missing 

gaps within this subject area. 
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FIGURE CAPTIONS 

 

Fig. 1   A simply supported functionally graded plate shown in 2-D under an explosive blast. 

Fig. 2   Distribution of the constituent materials through the plate thickness for the symmetric 

            case. 

Fig. 3   Distribution of the constituent materials through the plate thickness for the antisymmetric 

            case. 

Fig 4.   Incident pressure profile of a blast wave. 

Fig. 5   Comparisons of solutions of the time history of the central deflection under a heaviside 

            step load. 

Fig. 6   Implications of the volume fraction index on the central deflection as a function  

            of time. (R=0.766 m, 0.000408s=ta , st p 001372.0 ) 

Fig. 7   The counterpart of Fig 6 with a damping measure of 1.011   

Fig. 8   Implications of various amounts of damping on the deflection-time response of an              

            antisymmetric FG Plate. (N=0.5) 

Fig. 9   The implications of the compressive/tensile edge loading on the deflection-time  

            response of an antisymmetric FG plate. ( 2.011  , N=0.5) 

Fig. 10  The effects of various aspect ratios of an antisymmetric FG plate on the  

             deflection-time response. (N=0.5) 

Fig. 11  Implications of the volume fraction index on the deflection-time history  

             of an antisymmetric FG Plate without damping. 

Fig. 12  The implications of the value of the decay parameter on the time-deflection 

              response of a antisymmetric FG Plate without damping. (N=0.5) 


